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ABSTRACT

An abstract approximation theory and computational methods are developed
for the determination of opitmal linear—quadratic feedback controls, observers
and compensators for infinite dimensional discrete-time systems. Particular
attention is paid to systems whose open-loop dynamics are described by
semigroups of operators on Hilbert spaces. The approach taken is based upon
the finite dimensional approximation of the infinite dimensional operator
Riccati equations which characterize the optimal feedback control and observer
gains. Theoretical convergence results are presented and discussed.
Numerical results for an example involving a heat equation with boundary

control are presented and used to demonstrate the feasibility of our methods.
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1. Introduction

In this paper we develop an approximation theory and computational methods for
the determination of the optimal feedback control law for the discrete-time linear-
quadratic regulator problem, the optimal state estimator or observer gains and the
optimal compensator for infinite dimensional systems. Specifically, we are
concerned with systems whose dynamics can be described in terms of linear semigroups
of operators on Hilbert spaces. The essential feature of our approach is the finite
dimensional approximation of the infinite dimensional operator Riccati equations
that characterize the optimal feedback control and observer gains. We develop a
general, abstract approximation framework and an associated convergence theory which
is applicable to a wide class of problems.

The theory for the discrete—time control problem has been developed previously
in [5], while the theory for the observer and compensator in the continuous-time
case (with particular emphasis on systems describing the vibration of flexible
structures) is treated in [4]. Along with presenting the theory for the discrete-
time observer and compensator here for the first time, we briefly review and outline
our earlier results for the control problem.

Our treatment below requires that both the discrete—time input and output
operators be bounded. As will become evident from the example we present in Section
4 however, an unbounded input operator (i.e. its range is contained in some space
larger than the underlying state space) in the continuous-time problem may lead to a
bounded input operator when the system is sampled and considered in a discrete-time
setting. This notion can, to a certain extent, be generalized to permit the
application of the theory we develop here to a wide class of problems which
simultaneously involve unbounded input and output operators. This idea will be

treated in a forthcoming paper.



Now we provide a brief outline of the remainder of the paper. In Section 2 we
present the theory for the optimal infinite dimensional control law, observer and
compensator. In Section 3 the approximation theory and convergence results are
discussed. An example (including numerical results) involving a heat equation with

boundary control is used in Section 4 to demonstrate the feasibility of our methods.

2. The Infinite Dimensional Optimal Control Law, State Estimator and

Compensator

Let {H, <',°>H} be a Hilbert space and consider the time invariant, discrete-

time linear control system

(2.1) zy4) = Tz + Buy, k=0,1,2,....

zg e H

(2.2) Yx = Czy + Duy, k=0,1,2,....

where T € L (H), Be L(R™,H), C e L(H,RP) and D ¢ L(R™,RP). The infinite time

horizon discrete-time linear—quadratic regulator (LQR) problem is given by:

* *_ o
Find u = {uk}k=0 € lz(O,m;Rm) which minimizes the quadratic performance index
(2.3) J(w) = § <Qz.,z. >, + u Ra
kK’“K'H k k

k=0

where Q € L(H) is self-adjoint and nonnegative, R € LR™ 1s a symmetric, positive-

definite m x m matrix, zg € H is given and z = {z,} is determined by the

k' k=0

recurrence (2.1).




As in the finite dimensional case the discrete-time system (2.1), (2.2) {is

frequently the result of sampling a continuous time system of the form

(2.4) z(t) = Az(t) + Bu(r), £t >0
z(0) = z
(2.5) y(t) = Cz(t) + Du(t), t>0

where A is the infinitesimal generator of a Co—semigroup of bounded linear
operators, {T(t) : £ > O}, on H and B e L(R™,H). In this case we have
T =J(t) and B = fg'r(t)B dt where T is the length of the sampling interval or
sampling period.

A control sequence u € RZ(O,w;Rm) is said to be admissible for the initial
conditions zj if J(u) < ®». It can be shown (see {5], [10]) that if there is an
admissible countrol for each zy € H, then there exists a nonnegative self-adjoint

solution I e L(H) to the operator Riccati algebraic equation
* % -] *
(2.6) I =T (I -0B(R + B IB) ‘B H)T + Q.

If, in adddition, u admissible for z; implies lim |z = 0 then this solution is
k>

unique. Moreover under the two hypotheses given above, the LQR problem admlts a

clu

* *
unique solution u for each zy € H with J(u ) = <Hz0,z0>H . The optimal control is

given in feedback form by
*
u, = -Fz k =0,1,2,...

where the optimal feedback control gains F are given by




x -] %
(2.7) F=(R+ BIB) BIT

is the resulting optimal state trajectory. We have

z = Sz k=20,1,2,...

with the optimal closed-loop state transition operator S given by
(2.8) S =T - BF.

If Q is also coercive (i.e., Q » o for some a > 0) then S has spectral radius less

than one and S is uniformly exponentially stable with
k k
Is™] < (n]/e)(1 -a/lm])", k =0,1,2,0..

For each j = 1,2,...,m an application of the Riesz Representation Theorem

yields that the jth component of the optimal kth control input is given by

*] _ *>
Luk 3= <fj’ 2,75
T m
for some fj € H. The vector f = (f,,f ,...,fm) € %X H is referred to as the

1’72 .
j=1
optimal functional feedback control gains.

In order to implement a feedback control law of the form up = —sz, k =
0,1,2,... where G € L (4,R™) it is necessary that the full infinite dimensional state

z) be avallable for each k. In practice, however, only a finite dimensional




observation Yy € Rp of the state, as given in (2.2), is provided. Consequently, a

state estimator or observer is required.

For any operator G € L(RP,H) the discrete-time linear system

~

(2.9) z = Tz, + Bu, + G{yk - Cz, - Du,}

K+l K K K K k=20,1,2,...

is called an observer or estimatoc for the system {(2.1), (2.2). The feedback
control law

(2.10) u, = -Gz k=20,1,2,..

along with the obsecver (2.9) is referred to as a compensator for the system (2.1),

(2.2).
If we define ey = 2 T 2o k =0,1,2,... then direct calculation yields
errl = (T - GC)ek, k=0,1,2,...
or e, = S(G)keo, k =0,1,2,... where S(G) € L(H) is given by
(2.11) S(G) = T - GC.

If the control law or compensator (2.10) is to be used, then it is desirable to

have e + 0 as k+ @ . The ohserver corresponding to G is said to be strongly

N

> 0 as k+ = for each z. ¢ H. It is said to be uniformly

~ ~ kA
stable if [S(G) ZOIH 0

~ ~ A

exponentially stable Lf there exist positive constants M and r with r < 1l such that



l%(&)kl < ﬂ;k, k =0,1,2,000 .

1If z = {Zk}k=o and z = {zk}k=0 are generated by (2.1) and (2.9) respectively
© © ~ T. o
with u = {uk} o 8lven by (2.10) then z = {Zk} =0 = {(zk,zk) }k=0 satisfies the
recurrence
(2.12) Ziyl = S(G,G6) Z\ k=0,1,2,...

where S(G,G) = L(H x H) is given by

- T - BG
S(G,6) = |. -
GC T - BG - GC .
The system (2.12) or equivalently
z. =5,0 2 k=0,1,2,..
k b ~O’ b4 » ’

is the closed—~loop system corresponding to the control system (2.1), (2.2), the
observer (2.9) and the compensator (2.10).
We recall (2.8) and by analogy to (2.11), for G ¢ L(4,R™ we adopt the notation

(2.13) S(G) = T - BG.

Using the facts that-




-

Zp41 " Tzk - Bsz
= - +
(T BG)zk BGek
= S(G)zk + BGek
and
ek+l = [I, -I] Zk+1 = [I, -I] S(G,G) Zk

S@II, -11 7,

S(G)ek

and consequently that

. S(G) BG
S(6,G) = U N U
0 S(G)

-1

where U = U\ & L(H x H) is given by

standard arguments can be used to establish the following result.

~ ~

Theorem Suppose that there exist positive constants M, M, r and r for which

k k

|s(c)k] < Mr and-lg(&)k| < Mr , k=0,1,2,00. .

Then for each # with 2 > max(r,r) there exists a positive constant M such that

S (c,&)kl < ik , k=0,1,2,0c. .



In particular if S(G) and S(G) are uniformly exponentially stable (i.e.

Y

r, r < 1) then so too is S(G,G). Also, the spectrum of S(G,G), 0(S(G,G)) is given

by
5(S (6,8)) = 0(S(G)) U a(S(G)).

By analogy to the finite dimensional case (see [7]) we define the optimal
discrete—time observer for the system (2.1), (2.2) to be the system (2.9) with the

observer gains G replaced by F given by

Iy A

F = TIC (R + CIIC )

where I € L (H) is the minimal nonnegative self-adjoint solution (if one exists) to

the Riccati algebraic equation

(2.14) I =T -0IC (R + CIC ) CI)T +Q,

Q € L (H) is nonnegative sélf—adjoint and R ¢ L(Rp) is a symmetric positive

definite pXp matrix. When G in (2.10) is taken to be the optimal feedback control !

gains F given in (2.7) and z = {zk}k=0

~ % A~k o
is taken to be z = {Zk}k=0 , the trajectory

determined by the optimal observer, the resulting feedback control law

~% ko
(2.15) u = “Fz, k=0,1,2,..

is known as the optimal infinite dimensional compensator. The optimal closed~loop

system is given by




*

* ~ *
Zk+1 = Szk = S(F,F) zk

, k=0,1,2,.. .

We note that the adjoint of the optimal observer gains % are the optimal
control gains for the linear regulator problem obtained by replacing the operators T
and B in (2.1) with the operators T* and C* and the operators Q and R in (2.3) with
the operators 6 and i. Consequently the necessary and sufficient conditions for the
existence of a nonnegative self-adjoint solution (and therefore a minimal
nonnegative self-adjoint solution) ﬁ to the Riccati algebraic equation (2.14) become
clear and can be found in [5]. In addition, it is now also easy to specify the

conditions under which 1) (2.14) has a unique nonnegative self-adjoint solutfon and

2) the operator

S(F) =T - FC

”n >
1]

will be uniformly exponentially stable.
The optimal observer gains F is an element in L(RP,H). They therefore have a

representation of the form

A A

% T p
Fy = L £55; 5 V= 0 Ypeeesy,) € R
i=1
where fi e H, i = 1,2,,..,p. The vector f = (fl’f2""’fp) € x H is referred to as
1

the optimal functional observer gains.

Ordinarily of course, the otpimal observer has a stochastic interpretation.
The optimal observer as we have defined it above 1s the natural extension to
infinite dimensions of the well known finite dimensional discrete-time Kalman-Bucy

filter for the case in which the state and output equations are corrupted by



A

-10-

uncorrelated, stationary Gaussian white noise processes with zero mean and
respective covariance operators (matrices) & and i (see [7]). Under appropriate
additional hypotheses (i.e. that the state weighting operator Q in (2.3) is trace
class, see [1]) it is also possible to provide the optimal infinite dimensional
compensator given by (2.15) with the standard finite dimensional stochastic
interpretation (i{.e. as the usual optimal LQG compensator, see [3], [4]). The ideas
which have been presented above and the approximation theory which will be described
in the next section require omnly that the conditions which have been set forth thus
far hold. We shall therefore coutinue to take a strictly deterministic approach and
assume that the operators & and % (as well as Q and R) are determined by engineering
criteria (for example, stability margins, robustness of the closed~loop systems,
etc.) rather than via an assumed noise model incorporated into the underlying

dynamics.

3. Approximation and Convergence

In this section we develop an approximation framework which yields finite
imensional approximations to the optimal infinite dimensional control and observer
gains and the optimal infinite dimensional compensator. Central to our approach are

inite dimensional approximations to the infinite dimensional operator Riccati

equations (2.6) and (2.14). The approximating equations can be solved using
conventional techniques (for example, eigenvalue—-eigenvector or Schur decomposition
of the associated Hamiltonian matrices). Under mild and rather general assumptions,
the convergence of the approximation can be argued.

For each N = 1,2,... let Hy be a finite dimensional subspace of H. Let
PN : H~» HN denote the orthogonal projection of H onto Hy with respect to the H-
inner product, <*,*>; . For T e L(HN), B

€ L(Rm,HN) and Q e L(H) with Qy

H N

nonnegative self-adjoint, we consider the Riccati algebraic equation

e

e i
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ok _ * -1 %
(3.1) HN = TN(HN HNBN(R + BNHNBN) BNI[N)TN + QN .

We assume that for each N, the equation (3.1) has a unique nonnegative self-adjoint

solution HN € L(HN) and define the Nth approximating optimal control gains by

* -1 %
Fy = R+ BB BTy -

For the estimator, we take QV € L(HN) nonnegative self-adjoint and

CN € L(HN,RP) and consider the equation

A

- ~ * A - *_1A * -~
(3.2) HN = TN(HN - HNCN(R + CNHNCN) CNHN)TN + QN

Assuming a unique nonnegative self—adjoint solution I € L(HN), we define the NTD

N

approximating optimal observer gains by

= TNII (R + CNIINCN)

th

The N approximating optimal compensator is given by

(3.3) uN,k FNzN K’ k=0,1,2,...
ok ® th
where Zy {zN k}k—O is determined from the N approximating optimal observer
“% ** ~ % ~ * ~%

(3’4) k=0,l,2,oc.

+ -
2y el = TPk OBtk T Py Une T CNZN e T Duy it

A* ~
zN,O = PNz0 € HN .
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*

* 0
The output sequence y, = {yN,k}k;O is given by
* * + D;* 0,1,2
Ik - %N,k N,k k=0,1,2,...
where
* * L BE 7 K =0,1,2
2N, ktl T TPk NPN,k ? T Vais sy
* —
ZN,O - ZO .

The Nth approximating optimal closed-loop sytem evolves according to the recurrence

* *
el = Sy e k=0,1,2,...

* * A%k T
where Zﬁ,k = (ZN,k’ zN,k) and SN g L(H x HN) is given by

T -BF,
Sy =1 .
FNC TN - BNFN - FNCN .

The equations and formulas given above are operator equations and as such can
not be used in computations directly. It is their matrix equivalents with respect

to a given basis for Hy that are required.

N

We assume that the collection {¢§}i=l is a (not necessarily orthogonal) basis

for Hy and define N e x HN by oV - (¢T, ¢§ yeeay ¢§N)T. We adopt the
1

notational coanvention that for a linear operator L with domain and range in Hy, R™

Dt . e
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N KN
or Rp, its matrix representation with respect to the basis {¢i}i=1 for Hy and the
standard bases for R™ and RP will be denoted by [L].
* -
If we define the Gram matrix MN = <¢N,(¢N)T>H then [TN] = (MN) 1[TN]TMN,

* T o N.-1 T N _ N N2 N,-1
(By] = [By)'M and [cg] = (D7 (¢ )", Also I = u' (M) and IV = (M J0e™)
are respectively, the unique nonnegative symmetric solutions to the matrix Riccati

algebraic equations

N T,.N N T N -1 T N N
(3.5 T =[] (T - T B IR + BT (B DT (BT TOIT ] +Q
and

N N _ N T2 N T. -1 N T “N
(3.6) T = [T 1@ - T[] (R + [T [C] )T [ ITHITI™ + Q

where QN = MN[QN] and QN = [QN](MN)_l . The matrix representation for the

approximating optimal control gains is given by

T.N -1 T.N
[yl = @+ B 1TV B DT (B 1T N1, )

and for the approximating optimal observer gains by

2 N T2 N T,-1
(Fy] = [T LT e TR + [cyIriie 1D .

N

4 = =
If we write ZN,k @) ;N,k with CN,k € R , k 0,1,2,... then from (3.3) we
obtain
o r k=0,1,2
ug e = Ty ey = O hatseen
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and from (3.4)

IS - % A% ~ * ~k ~ %
il T Iyt Byluy o Fgllyy o= (0] Sy~ Doy ds k= 0,12,
" N.—1 N *
N0 " () 7 <@,z .
N N N NT o h
If we let £ = (fl’ fz,...,fm) € X HN denote the N© approximating optimal

1
functional feedback control gaians, then from

N
FyZy = <E ,zN>H = [FN]CN

N.T
where z.. = (2 )¢

N £ HN, we find

N

N N.-1 N
£ = [FN](M ) e .

Similarly, the approximating optimal functional observer gains

|3

N _ AN AN SN\T .

£ = (fl’EZ""’fp) € ? Hy are given by
“N o ZT.N
£ = [FN] ¢ .

It is immediately clear that the limiting behavior of the approximation (i.e.
as N + «) 1ig determined by the limiting behavior of the solutions to the finite
imensional Riccatl equations (3.1) and (3.2). A convergence theory for
approximations to discrete-time Riccati equations was developed in detail in [5].
We briefly summarize those results here.
We assume that the spaces Hy are H-approximating in the sense that the
projections Py converge strongly to the identity on H as N + =, Also, we require

A

* * -
that TNPNz + Tz, TNPNz + Tz, QNPNz + Qz and QNPN + Qz for each z € H
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~

and that BN + B and CNPN + C in norm as N+ «» . Define SN’ S

SN = TN— BNFN and SN = TN - FNCN .

N € L(HN) by

If there exists a positive constant M (M) independent of N for which

HN <M (HN < M) then there exists a nonnegative self-adjoint solution I () of (2.6)

((2.4)) and HNPN (HNPN) converges weakly to Il (II) as N+ « , If, in addition, there

exists a positive constant r (r) less than one and independent of N for which

k
N

k

G.7) syl cu S (sf] < u e, k=1,2,...

- 4
then HNPN (HNPN) will converge strongly to I (II).

If the operators Qy (QN) are uniformly (with repsect to N) coercive and

~

the HN (HN) are uniformly bounded then there exists a positive r (r) less than one
for which (3.7) holds. If it is also true that Q (Q) is trace class and
QP (QNPN) converges in trace norm to Q (Q), then I (I) is also trace class and
II L]
NPN (HNPN) converges in trace norm to I (II)
The consequences of these results in the context of the control and observer

problems are at once clear. If HNPN + II weakly as N + =, then

N
FNPN + F and SNPN + S strongly and fi + f,,1=1,2,...,m weakly in H as

i)
N+ o, If HNPN + II strongly, then FN + F 1in norm, SNPN + S strongly and

+ fi’ i=1,2,.,..,m strongly in H as N + =, For the observer problem,

A

if I P, > I weakly, then FN + F and SNPN + S weakly and f? + fi’ i=1,2,...,p

weakly in H as N » =, If IINPN + II strongly, then FN + F in norm, SNP
N ~
>

5 fi’ i=1,2,...,p strongly in H as N+ = ,

-

NS

strongly and £
Let PN denote the projection of H x H onto H x HN defined by
Pn(z1,2zp) = (z),Py2z5). If HNPN > II weakly or strongly then

SN1% + S weakly or strongly depending only upon whether HNP + I weakly or strongly

N
as N + = ., Under appropriate additional hypotheses on the spectral properties of




-
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the open loop system and the nature of the approximation spaces HN and the
projections Py, it is possible to obtain a result regarding the norm convergence
of SN PN to S (see [4]). An important consequence of this norm convergence of the
closed~loop systems is that the uniform exponential stability of S would imply the
‘uniform exponential étability of SN for all N sufficiently large.

* %
Remark It is sometimes the case that while T P_+ T strongly, T P_~+ T

NN N™N
only weakly (see, for example [2]). In this instance it remains possible to
demonstrate the weak convergence of IINPN to I (see [5]). However, we do not see how

~ A

to retain the weak convergence of HNPN to I,

Remark If the discrete—time system (2.1), (2.2) was obtained via the sampling of a
continuous time system of the form (2.4), (2.5) then the approximation to T, Ty> 1s
frequently obtained by approximating the operator A by an operator AN and then

* *
setting TN = exp (ANT). The convergence of TPy to T and TNPN to T can then be

argued using the well known Trotter—Kato semigroup approximation result (see [6]).

4. An Example: A Heat Equation with Boundary Input

We consider the parabolic system with boundary control given by

2 (e,x) -2 a0 (0, £5>0, xe (0,1)
w(t,0) =0 w(t,1) = v(t), t >0
w(0,x) = ¢(x), x e [0,1]

where a € Hl(O,l), a(x) >0, xe [0,1], ¢ € L2(0,1) and v € LZ(O,w). We take the

average temperature over an interval of small, but positive, length,




F |

-17-

(e, ,c

1’ 2]. That is

0<e

-—ie—fsz w(t,x)dx, !

€
y(t) ==
€27 %1751

< €, < 1.

We choose the state space H to be L2(0,1) endowed with the usual inner product

and denote the length of the sampling interval by T. We consider piecewise

controls of the form
t e [kr,(k+l)T),

v(t) = 4y k =0,1,2,...

and take the discrete—time state z, € L2(0,1) to be

k
z, = 1im _ w(t,*), k=1,2,...
>kt
zg = % .

The resulting discrete-time control system is given by (see [5])

Zp4l = Tz + Buy, k=0,1,2,...

¢

20
k=0,1,2,000 &

Vi = Czk,

The open-loop state transition operator T is given by T =T(t) where

constant

{T(t) : t » 0} is the analytic semigroup of bounded linear operators on H with

infinitesimal generator A defined by AV = (ap')' for

Y e H2(0,1) N Hé(O,l). The input operator B € L(R,H) = H is given by
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B= ((I =T, + fg T(o)a'do

where wo e H is given by wo(x) = x, x€ [0,1}]. The output operator

Ce L(H,R) = H' takes the form

€

2
Yy = ——— [ © v(x)dx, Vv e L,(0,1).
2—81 61 2

The performance index for the control problem 1s assumed to be of the form

2

ot 2
J(u) = z q}z | + ru
Lo VPkln k

with q » 0 and r > 0. For the optimal observer problem we assume that q » O

A

and r > 0 are given.

The operator A is densely defined, self-adjoint and has compact resolvent.

satisfies the dissipative inequality
2 2 1
(4.1) <Ab B>y < —m|le , ¥ e B(0,1) NHO,L)

for some w > 0 and consequently the semigroup {T(t) : t > 0} is uniformly

-wt

exponentially stable with |T(t)| < e , £t > 0.

It follows therefore, that both the optimal control and observer problems

It

(along with the associated operator Riccatl equations) have unique solutiomns. The

optimal control law is given by

* * 1 *
u, = Fz = - <f,z 0 = - fo f(x)z, (x)dx, k =0,1,2,...
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where f € L2(0,1) is the optimal functional feedback control gain. The optimal

observer gains have the form

where E € LZ(O,I) is the optimal functional observer gain.

We note that if a(x) = a, a constant, and € and €, are chosen appropriately,
then all of the open—loop modes will be controllable and observable (i.e. B and C*
are not orthogonal to any of the eigenfunctions of T = T*).

We use a standard Ritz~Galerkin approach to define a linear spline based
approximation scheme. For each N = 2,3,... let {¢§}?;i denote the usual "hat”

functions on [0,1] which vanish on the boundary. They are given by

- i-l i

Nx - j +1 x € | 5 N]

N = } 3 - j...j+_l.

¢j(x) j+1 Nx X € [N’ N ]
0 elsewhere

for j = 1,2,...,N-1.

Letting V be the space Hé(O,l) endowed with the inner product
<¢l,¢2>v = <awi, ¢é>H, the usual compact embeddings V ¢ H ¢ V' hold. Set
HN = gpan {¢§}§;i and denote by Py the orthogonal projection of H onto Hy with
respect to the H-inner product. Note that Hy < V and denote by P; the orthogonal
projection of V onto HN with respect to the V inner product.

From (4.1) we find 0 € p(A). Consequently A“l exists and is compact.
Define AN € L(HN) to be the inverse of the operator;&&l = P; A-lIHN . It is not
difficult to show (see [5]) that the operator AN is well defined, self-adjoint and

satisfies
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2
Ady¥dy € vyl Yy € Hy -

Setting Tﬁ(t) = exp (Ayt), the semigroups of bounded linear operators on

HN’ {T&(t) : t » 0} are uniformly exponentially stable with ]TN(t)I < eﬁut, t » 0.

Elementary properties of linear spline functions (see [9]) imply that

PN + 1 strongly on H and P; + I strongly on V as N » =, ince A—l is compact

and

v

-1
y - DAY, veH

-— — V - -
2y AT = ATl < pg AT AT = e

we conclude that P; A—l + A~l in norm as N + «, It follows that A;IlPN > A—1

strongly as N + » and therefore (using the Trotter—Kato semigroup
* *
approximation theorem, see [6]) that TV(t)PNw + T(e)Y and TN(t)PNw + T ()Y

as N » @ for each y € H uniformly on bounded t—intervals.

Setting TN = TN(T), QN = qPN’ QN = qPN, CN = CPN and

By = (I = T(1))Phy + fg Ty(o)Pya'do,

the uniform exponential stability of TN implies that the yth approximating
Riccati equations (3.1) and (3.2) have unique, nonnegative, self-adjoint

solutions HN and HN for each N and that HNPN + II and I[NPN + I strongly as

N+ o, For Yy € Hand y € R we have that the Nth approximating optimal

-

feedback control and observer gains Fy and FN satlisfy

1

OfN(x)w(x)dx

FybgV = <E B>, = <E 0>, = |

and

|
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~

Fy ==ty

for some fN, fN € HN with fN + £ and fN + f strongly in L2(O,1) as N > =,

N
Recalling the definition of ¢ and M\, the (N-1) x (N-1) matrix

representation for the operator AN is given by [AN] = (MN)_I(LN) where

LN = - <®N,(¢N)T>V . Then [TN] = exp ([Ag] 1) and defining
N = t = N t N - — 3 4 1
wo ’wO>H » ay % ,a >H and I” to be the (N-1) x (N-l) identity matrix
we have
N N.-1 N, ~1
[BN] = (I - [TN])(M ) ¢O f exp([A c)(M ) “ayda
_ N -1 N -1 N N L
= (1 - Def) Ty + BT ] - THe) T
Q] N Q.1 = qIN and [C.] = C(@N)T with fN = [F ](MN)_IQN and
N N N N
PR [Fy ]T¢N .
Setting a(x) =1, xe [0,l1],q=1,q=1,r =1, r =1, 1t = .01,
61 = %-- .04/2 and ez = %—+ .03 2 we used our scheme to obtain the

approximating functional gains fN and fN for various values of N plotted in
Figures 4.1 and 4.2 respectively below. The matrix Riccati equations (3.5)
and (3.6) were solved using a generalized eigenvector approach (see [8]). All

computations were carried out on_.an IBM PC personal computer.
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Figure 4.2:

3.9

«.91

-22-

Approximating optimal functional feedback control gains, f .
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